Canonical Hilbert-Burch matrices for ideals of k[x,y]

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Decomposition of Polynomial Ideals

V.Ortiz established in [10] the existence of a canonical decomposition of ideals in a commutative noetherian ring. In this paper we study the canonical decomposition of ideals in a polynomial ring and we give an algorithmic procedure to compute canonical decompositions.

متن کامل

Hilbert functions and lex ideals

We study Hilbert functions of graded ideals using lex ideals.

متن کامل

Normalization of monomial ideals and Hilbert functions

We study the normalization of a monomial ideal and show how to compute its Hilbert function if the ideal is zero dimensional. A positive lower bound for the second coefficient of the Hilbert polynomial is shown. 1 Normalization of monomial ideals In the sequel we use [3, 11] as references for standard terminology and notation on commutative algebra and polyhedral cones. We denote the set of non...

متن کامل

HILBERT FUNCTIONS OF d-REGULAR IDEALS

In the present paper, we characterize all possible Hilbert functions of graded ideals in a polynomial ring whose regularity is smaller than or equal to d, where d is a positive integer. In addition, we prove the following result which is a generalization of Bigatti, Hulett and Pardue’s result: Let p ≥ 0 and d > 0 be integers. If the base field is a field of characteristic 0 and there is a grade...

متن کامل

Polynomial Complexity for Hilbert Series of Borel Type Ideals

In this paper, it is shown that the Hilbert series of a Borel type ideal may be computed within a complexity which is polynomial in Dn where n + 1 is the number of unknowns and D is the highest degree of a minimal generator of input (monomial) ideal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2008

ISSN: 0026-2285

DOI: 10.1307/mmj/1220879402